
1 | P a g e

Last Updated: 16 February 2023

Prepared by: Kevin McGarigal

Tutorial 1. Setting Up Software and Inspecting Grids

In this tutorial, you will inspect the grids (using either ArcMap, a text editor, or R) to be

analyzed in the subsequent tutorials.

1. Download and install FRAGSTATS

First, if you haven't already done so, download FRAGSTATS 4.x and run the setup utility

to install the software on your computer.

2. Inspect Geotiff grids in ArcMap

Next, inspect the grids to make sure you understand the landscape definition before

analyzing them, since the results of the analysis can only be interpreted in the context of

the landscape definition.

If you are planning on working with Geotiffs (preferred format) and wish to inspect the

grids using ArcMap, open up the provided fragtutorial_1.mxd project in ArcMap.

The project

contains several

data layers, as

listed in the table

of contents,

including a

landcover grid

(lugrid.tif) for

an arbitrary

extent in western

Massachusetts,

and all are

Geotiffs. Note, if

the paths to the

layers are broken,

you may have to

repair the data

source and point

to the layers in

the appropriate

folder.

2 | P a g e

As you can see from the legend, the lugrid.tif contains six landcover classes, including:

1) open (largely agriculture), 2) residential, 3) water (open water bodies and large

rivers), 4) forest, 5) wetland, and 6) urban.

Open the lugrid layer properties and inspect the grid properties on the Source tab. In

particular, note the grid dimensions (1104 columns by 1035 rows), cell size (50 m),

format (GRID), and pixel type (signed integer). The signed integer pixel type is

necessary if the landscape has a border; i.e., strip of classified cells outside the landscape

boundary and

assigned

negative class

values. If the

landscape does

not contain a

border, then an

unsigned integer

type is OK. In

this case, the

lugrid does not

contain a

border, but the

sub-landscapes

(below) do, so

the pixel type

has been set to

signed integer.

Next, open the lugrid layer attribute table and inspect the class values present on the

grid. Note the class values and text description for each class. You will need to know the

class values later on.

Next, view the reg78b.tif

grid by selecting it in the

table of contexts and

zooming to the layer extent.

This grid is a randomly

selected roughly 5x5 km (25

km2) square sub-landscape

sampled from the lugrid.

Expand the legend and note

the landcover classes

3 | P a g e

present; it has the

same six landcover

classes as before,

but with the

addition of six

"border" classes.

The border is

simply a strip of

classified cells

surrounding the

landscape of

interest that

provides

information on

patch type

adjacency along the

landscape

boundary. In the

legend provided,

the border classes have been assigned a lighter shade of

the color assigned to the corresponding class inside the

landscape boundary. Importantly, a border is identified in

FRAGSTAST by negatively valued cells. An inspection of

the grid attribute table reveals the same six landcover

classes as before, but with both a positive (inside the

landscape boundary) and negative (border, or outside the

landscape boundary) version of each class. Briefly, I

created a custom script that clips the lugrid layer with a

polygon coverage for one of the sub-landscapes, and then

buffers the polygon by 50 m and clips the lugrid layer

again but with the buffered (i.e., slightly larger) polygon.

Next, the larger grid is multiplied by -1 to convert the cell

values to negative. Lastly, the two grids are merged, with

the smaller grid (the sub-landscape of interest) on top,

resulting in positive values everywhere except the narrow

strip of cells in the border. Note, this is a basic

geoprocessing script that can be implemented in any

number of languages depending on the users preference,

and thus is not presented here.

4 | P a g e

Lastly, view the other sub-landscape grids in the table of contents. There are three

different sub-landscapes: reg78, reg66, and reg21, each of which also contains a version

with a landscape border: reg78b, reg66b, and reg21b. These landscapes differ largely in

the amount of forest landcover.

2. Inspect Ascii grids in text editor

If you are planning on working with Ascii grids and don’t want to inspect them using R

(see below), you can inspect the grids with a text editor. Ascii files are interpretable.

They are not pretty to look at and you can't do too much with them in their raw form,

but it is useful to know what these files look like.

Open up reg78b2.asc in a text editor (the top left portion of this file is shown below).

This a space-delimited ascii file (i.e., there is a space between each cell entry) and is

therefore interpretable. Note, this ascii file was created by converting the reg78b

ArcGrid to an ascii file in ArcMap. Note the header information included in the first six

lines of the file. This header information must be deleted before it can be analyzed in

FRAGSTATS; however, the information on the grid dimensions (ncols=102 and

nrows=102), cellsize (50), and nodata value (-9999) will be needed later when

parameterizing the FRAGSTATS model. In particular, note the landscape border

indicated by the negative class values in the first row and column.

3. Inspect Ascii grids in R

Viewing the ascii grids is a bit more difficult without importing them into your favorite

GIS. However, if you are an R user, you can use the following script (or open the

provided script, tutorial_1.R) to plot the grid in R. Note, there are several ways to plot

the grids in R. If you are familiar with the Raster or Terra packages, you can import the

5 | P a g e

ascii grids and plot them quite easily, but specifying a color scheme for the legend and

plotting a pretty legend is a bit tricky. The following script makes use of the base

functions in the Graphics library:

First, set the working directory to wherever you have installed the tutorial; e.g.:

 setwd('c:/work/fragstats/tutorial/tutorial_1')

Next, read in the ascii grid, as a matrix, into an object (m):

 m<-as.matrix(read.table('reg78b.asc'))

Next, in order to assign colors to each landcover class, identify each unique class value:

 uv<-sort(unique(as.vector(m)))

Next, create breaks for assigning colors to class values (breaks are at the minimum -1,

midpoints and maximum +1). Note, this is necessary because the plot function (image)

is designed for continuous variables not categorical variables as is the case with the

landcover image:

 my.breaks<- (c(min(uv)-2, uv) + c(uv, max(uv)+2))/2

Next, create a color legend for the plot:

 my.colors<-c('gray','lightskyblue','lightgreen','lightpink','lightyellow','yellow',

 'purple','slateblue','green','skyblue','black')

Next, check to make sure you have a color for every unique class value:

if(length(my.colors) != length(uv)) stop("You need a color for every unique

value")

Next, print to the console the color associated with each class value to verify that you

have what you want:

 data.frame(code=uv, color=my.colors)

Finally, plot the image with the image() function in the graphic library. Note, because

the image() function does a 90 degree counter-clockwise rotation of the image, a matrix

transpose and some indexing is necessary to rotate the image back to its original

orientation:

6 | P a g e

 image(t(m)[,nrow(m):1],asp=1,breaks=my.breaks,col=my.colors

4. Inspect Geotiff grids in R

If you are an R user, you can inspect the Geotiff grids with R using the following script

(or open the provided script, tutorial_1.R). Reading and plotting Geotiffs in R is quite

a bit simpler than dealing with Ascii grids. Note, there are several ways to plot the grids

in R. If you are familiar with the Terra package, you can import the Geotiff grids and

plot them quite easily, as follows:

First, set the working directory to wherever you have installed the tutorial; e.g.:

 setwd('c:/work/fragstats/tutorial/tutorial_1')

Next, load the Terra package in R:

 library(terra)

Next, read in the Geotiff grid into a spatRaster object (g):

 g<--rast('reg78b.tif'))

7 | P a g e

Next, in order to assign colors to each landcover class, identify each unique class value:

 uv<-sort(unique(g[]))

Next, a color table by assigning colors to class values. Note, if you don’t do this then R

will simply choose a default color scheme:

 my.colors<-c('gray','lightskyblue','lightgreen','lightpink','lightyellow','yellow',

 'purple','slateblue','green','skyblue','black')

Next, check to make sure you have a color for every unique class value:

if(length(my.colors) != length(uv)) stop("You need a color for every unique

value")

Next, print to the console the color associated with each class value to verify that you

have what you want:

 data.frame(code=uv, color=my.colors)

Next, assign the color table to the spatRaster:

 coltab(g)<-data.frame(value=uv,col=my.colors)

Finally, plot the spatRaster with the plot() function:

 plot(g)

The plot should look just like the one we produced above for the Ascii grid.

